The
foray
Projection

Jack Thompson - Aug 2021.
Uni of Western conctralio

Overwiew

- Soal: Rigoursly define the Leray projection on $\mathbb{R}^{n}, \mathbb{R}^{n} \backslash \mathbb{Z}^{n}$ and apply it to the incompressible Navier Stokes equations
- Plan:1) Some motivation

2) Leray Systems

2a) Wigueness
26) Eistence

Motwation
Incompressible Naiver Stokes equations:

$$
\left\{\begin{aligned}
u_{t}+(u \cdot \nabla) u & =-\nabla p+v \Delta u+F, & \text { in } \mathbb{R}^{n} \times(0, \infty) \\
\operatorname{div} u & =0, & \text { in } \mathbb{R}^{n} \times(0, \infty)
\end{aligned}\right.
$$

Why? Formally, take divergence of the fist line:

$$
\begin{gathered}
\operatorname{div}\left(u_{t}\right)=(\operatorname{div} u)_{t}=0, \quad \operatorname{div}\left(-\nabla_{p}\right)=-\Delta p \\
\operatorname{div}(\Delta u)=\Delta \operatorname{div} u=0
\end{gathered}
$$

Motuation

$$
\begin{aligned}
\operatorname{div}(u \cdot \nabla) u & =\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}} \sum_{j=1}^{n} u_{j} \frac{\partial u_{i}}{\partial x_{j}} \\
& =\sum_{i, j=1}^{n} \frac{\partial u_{j}}{\partial x_{i}} \frac{\partial u_{i}}{\partial x_{j}}+\sum_{j=1}^{n} u_{j} \frac{\partial}{\partial x_{j}} \sum_{i=1}^{n} \frac{\partial u_{i}}{\partial x_{i}} \\
& =\sum_{i, j=1}^{n} \frac{\partial u_{j}}{\partial x_{i}} \frac{\partial u_{i}}{\partial x_{j}}+\underbrace{\sum_{j=1}^{n} u_{j} \frac{\partial}{\partial x_{j}} \operatorname{div} u}_{=0} \\
& =\sum_{i, j=1}^{n} \frac{\partial u_{j}}{\partial x_{i}} \frac{\partial u_{i}}{\partial x_{j}} .
\end{aligned}
$$

Motivation
Hence,

$$
-\Delta p=\sum_{i, i=1}^{n} \frac{\partial u_{j}}{\partial x_{i}} \frac{\partial u_{i}}{\partial x_{j}}-\operatorname{div} F
$$

\rightarrow Poisson equation!
Thus, if $f(x):=\sum_{i, j=1}^{n} \frac{\partial u_{i}}{\partial x_{i}} \frac{u_{i}}{\partial x_{j}}-\operatorname{div} F$ then * Otsuming F, p,u decay rapidly.

Motivation
Question: Can we reformulate (INS) without the pressure term?
Answer: Yes!
Let $u: \mathbb{R}^{n} \overrightarrow{\mathbb{R}^{n}}$ be smooth and rapidly decaying. The Fourier transform of u is

$$
f\{u\}(y)=\hat{u}(y)=\frac{1}{(2 \pi)^{n / 2}} \int_{\mathbb{R}^{n}} u(x) e^{-i x \cdot y} d x^{-v e c t o r}
$$

Motwation
The inverse fourier transform of u :

$$
\mathcal{f}^{-1}\{u\}(x)=v(x)=\frac{1}{(2 \pi)^{n / 2}} \int_{\mathbb{R}^{n}}^{\int} u(y) e^{i x \cdot y} d y
$$

The Leray projection of u :

$$
\mathbb{P}(u)=u-\nabla \Delta^{-1}(\operatorname{div} u)
$$

which is understood in the sense Fourier

$$
\mathbb{P}(u)=\mathcal{f}^{-1}\{S(y) \hat{u}(y)\} \quad S(y)=I_{n}-\frac{y \otimes y}{|y|^{2}}
$$

Motivation
Properties of the Leray projection:
Let $u \in\left(\delta\left(\mathbb{R}^{n}\right)\right)^{n}$ ie. smooth and rapidly decaying

1) $\quad \mathbb{P}(\mathbb{P}(u))=\mathbb{P}(u)$
2) $\quad d i v \mathbb{P}(u)=0$
3) if $\operatorname{div} u=0$ then $\mathbb{P}(u)=u$.
4) if $p \in S\left(\mathbb{R}^{n}\right)$ then $\mathbb{P}\left(\nabla_{p}\right)=0$.
5) af $p \in S\left(\mathbb{R}^{n}\right)$ then $\left(\mathbb{P}_{p}, \mathbb{P}(u)\right)_{L^{2}\left(\mathbb{R}^{n}\right)}=0$

Proof 1)-4) Exercise.

Proof of 5) Since the Fowier transform is an isometry from $L^{2}\left(\mathbb{R}^{n}\right) \rightarrow L^{2}\left(\mathbb{R}^{n}\right)$,

$$
\begin{aligned}
\left(\nabla_{p}, \mathbb{P}(u)\right)_{L^{2}\left(\mathbb{R}^{n}\right)} & =\left(\mathcal{f}\left\{\nabla_{p}\right\}, f f\{\mathbb{P}(u)\}\right)_{L^{2}\left(\mathbb{R}^{n}\right)} \\
& =\int_{\mathbb{R}^{n}} i \hat{p}(y) y \cdot\left(I_{n}-\frac{y \odot y}{|y|^{2}} \hat{u}(y)\right) d y \\
& =\int_{\mathbb{R}^{n}} i \hat{p}(y) y \cdot \hat{u}(y) d y-\int_{\mathbb{R}^{n}} i \hat{p}(y) y \cdot \frac{y \circ y}{|y|^{2}} \hat{u}(y) d y
\end{aligned}
$$

Since $y \cdot \frac{y \circ y}{|y|^{2}} \hat{u}=\sum_{j, k=1}^{n} \frac{y_{j}^{2} y_{k}}{|y|^{2}} \hat{u}_{k}=y \cdot \hat{u}$ it follows

$$
\left(\nabla_{p}, \mathbb{P}(u)\right)_{L^{2}\left(\mathbb{R}^{n}\right)}=\int_{\mathbb{R}^{n}} i \hat{p}(y) y \cdot \hat{u}(y) d y-\int_{\mathbb{R}^{n}} i \hat{p}(y) y \cdot \hat{u}(y) d y=0
$$

Motwation
Return to (INS): $\left\{\begin{aligned} u_{t}+(u \cdot \nabla) u & =-\nabla p+v \Delta u+F \\ \operatorname{div} u & =0\end{aligned}\right.$
comply $\mathbb{P}: \cdot \mathbb{P}\left(u_{t}\right)=\mathbb{P}(u)_{t}=u_{t}$

- $\mathbb{P}(\nabla p)=0$

Write $\quad A u:=-\mathbb{P}(\Delta u), \quad \mathbb{B}(u, v)=\mathbb{P}((u \cdot \nabla) v)$
Stoke's operator
$\tilde{u}: t \mapsto(x \mapsto u(x, t)) \longleftarrow \tilde{u}$ maps time to a function

Motivation
Then (INS) becomes:
(*) $\frac{d \tilde{u}}{d t}+2 A \tilde{u}+B(\tilde{u}, \tilde{u})=\mathbb{P}(F)$
\rightarrow Functional differential equation
Benefits:

- Sot aid of p
- Can use (*) to define notion of weak

A note on the Stoke's operator $A u:=-\mathbb{P}(\Delta u)$
Why int $\quad A=-\mathbb{P} \Delta u=-\Delta \mathbb{P}(u)=-\Delta u$?

- On $\mathbb{R}^{n} \backslash \mathbb{Z}^{n}$ this is tue.
- In a founded domain Ω, this is not always true.
On $\mathbb{R}^{n} ? ?$?

Leray Systems
Problem: Siren a vector field $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ can we write F as the sum of a divergence free vector field and a conservative vector field?
ie. Sion $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ can we find $v: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ and $P: \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that

$$
\left\{\begin{array}{l}
F=v+\nabla p \\
d i v v=0
\end{array}\right.
$$

Leray Systems
This is called the Helmholtz decomposition since we are working on \mathbb{R}^{n}.

If we considered the problem on a bounded domain Ω with "n o-slip" condition $u=0$ an $\partial \Omega$ then this is called the Yelmholtan-bury decomposition.

Leray Systems
Formally, take divergence of both sides:

$$
\operatorname{div} F=\operatorname{div}(v+\nabla p)=\Delta p
$$

Hence, $p=\Delta^{-1} \operatorname{div} F$. It follows

$$
v=F-\nabla_{P}=\underbrace{F-\Delta^{-1} d u F}_{\mathbb{P}(F)}
$$

- $\mathbb{P}(F)$ projects F into space of divergence-free v.f.s.
- To rigoursly define \mathbb{P}, we need existence \& uniqueness of ferny systems.

Uniqueness
Leray Systems

- By linearity it it is enough to understand the case $F=0$
- $F=0 \leadsto \sim b=-\nabla_{p}, \operatorname{div} v=0 \mu \Delta \Delta p=0$

Uniqueness is always up to a harmonic function
Suppose F, V, P are smooth.

Suppose $p \in L^{8}\left(\mathbb{R}^{n}\right), q \in(1, \infty)$ ln \mathbb{R}^{n} Suppose $v \in L^{8}\left(\mathbb{R}^{n} ; \mathbb{R}^{n}\right)$.
mean-value formula
$p(x)=\int_{B_{R}(x)} p(y) d y \quad \forall R>0$ Let u be harmonic $w / \nabla u \in L^{8}\left(\mathbb{R}^{n} ; \mathbb{R}^{n}\right)$
$\left.\begin{array}{l}\text { Koine } \\ \text { inguand }\end{array} \frac{B_{R}(x)}{\left|B_{R}(x)\right|} \cdot\left|B_{R}(x)\right|^{1-1 / q}\|P\|_{L} \|_{\left(R^{n}\right)}\right)$ is still a solution $\quad \begin{aligned} & p \rightarrow p+u, v \rightarrow \\ & \end{aligned}$

$$
0
$$

$$
\leqslant C R^{-q / n}\|p\|_{L q\left(R^{\prime}\right)}
$$

Send $R \rightarrow \infty, p(x)=0$.
Solutions are unique.
∇u is harmonic $\sim \Delta \Delta u=0$

$$
\rightarrow u(x)=f, \quad b \in \mathbb{R}
$$

Solutions are unique up to the addition of a constant.
$\ln \mathbb{R}^{n} \backslash \mathbb{Z}^{n}$
Suppose F, P,V are periodic.

- $F=0 m D P$ is harmonic
\rightarrow Liowille's tho $\Rightarrow P$ is a constant
Solutions are unique up to a constant.
Remarks: 1) Since only ∇_{p} appears in (INs), this freedom almost entirely irrelevant to us.

2) We can remove this freedom by taking $\int_{\mathbb{R}^{n} \backslash \mathbb{Z}^{n}} p d x=0$.

Mote: Suppose only F,v are periodic. Then we can modify, p by a harmonic function u which heed not be periodic, but whose gradient ∇_{u} is periodic
Since ∇u is harmonic,
Siourille's the $\Rightarrow \nabla u=a$ for some $a \in \mathbb{R}^{n}$

$$
\longrightarrow u(x)=a \cdot x+b, \quad b \in \mathbb{R}^{n}
$$

Solutions are unique up to affine function

Existence
Leroy Systems
$\ln \mathbb{R}^{n}$
for each $F \in \&\left(\mathbb{R}^{n}\right)^{n}$, define

$$
\left.\left.\mathbb{P}(F)=\mathcal{F}^{-1}\right\} S(y) \hat{F}(y)\right\}, \quad S(y)=I_{n}-\frac{y \otimes y}{|y|^{2}}
$$

By our previous calculations

$$
v=\mathbb{P}(F), \quad p=f\left\{-i \frac{y \cdot \hat{F}}{|y|^{2}}\right\}\left(=\Delta^{-1} \operatorname{div} F\right)
$$

How let $s \geqslant 0$. For each $u \in L^{2}\left(\mathbb{R}^{n} ; \mathbb{R}^{n}\right)$, define

$$
\begin{aligned}
\|u\|_{H^{8}\left(\mathbb{R}^{n} ; \mathbb{R}^{m}\right)} & =\left(\int_{\mathbb{R}^{n}}\left(1+|y|^{2}\right)^{8}|\hat{u}(y)|^{2} d y\right)^{1 / 2} \\
& =\left\|\left(1+|y|^{2}\right)^{s / 2} \hat{u}\right\|_{L^{2}\left(\mathbb{R}^{n} ; \mathbb{R}^{m}\right)}
\end{aligned}
$$

and the fractional Sobolev space

$$
H^{s}\left(\mathbb{R}^{n} ; \mathbb{R}^{m}\right)=\left\{u \in L^{2}\left(\mathbb{R}^{n} ; \mathbb{R}^{m}\right) \mid\|u\|_{H^{s}\left(\mathbb{R}^{n} ; \mathbb{R}^{m}\right)}<\infty\right\}
$$

- It is well-known that $\delta\left(\mathbb{R}^{n}\right)^{n}$ is dense in $H^{s}\left(\mathbb{R}^{n} ; \mathbb{R}^{n}\right)$
- Moreover, for each $F \in \delta\left(\mathbb{R}^{n}\right)^{n}$,

$$
\|\mathbb{P}(F)\|_{H^{s}\left(\mathbb{R}^{n} ; \mathbb{R}^{n}\right)} \leqslant C\|F\|_{H^{s}\left(\mathbb{R}^{n} ; \mathbb{R}^{n}\right)}
$$

(See exercises at the end)

- Hence, \mathbb{H}^{s} can be continuously extended to

$$
H^{\mathfrak{s}}\left(\mathbb{R}^{n} ; \mathbb{R}^{n}\right)
$$

- Similarly, $\Delta^{-1} d i v$ can be extended to a map from

$$
H^{s}\left(\mathbb{R}^{n} ; \mathbb{R}^{n}\right) \rightarrow\left\{u \mid \nabla u \in H^{s}\left(\mathbb{R}^{n} ; \mathbb{R}^{n}\right)\right\}
$$

Existence Leray Systems
$\ln \mathbb{R}^{n} \backslash \mathbb{C}$ Expand F, v, p in terms of their Fourier series:

$$
\begin{array}{ll}
F(x)=\sum_{k \in \mathbb{Z}^{n}} \hat{F}(k) e^{2 \pi i k \cdot x} & \hat{F}(k)=\int_{R^{\prime} \backslash \mathbb{Z}^{n}} F(x) e^{-2 \pi i k \cdot x} d x \\
v(x)=\sum_{k \in \mathbb{Z}^{n}} \hat{v}(k) e^{2 \pi i k \cdot x} & \hat{v}(k)=\int_{R^{\prime}} v(x) e^{-2 \pi i k \cdot x} d x \\
p(x)=\sum_{k \in \mathbb{Z}^{n}} \hat{p}(k) e^{2 \pi i k \cdot x} & \hat{\rho}(k)=\int_{R^{\prime} \backslash \mathbb{R}^{n}} p(x) e^{-2 \pi i k \cdot x} d x
\end{array}
$$

Since F, v, p are smooth, $\hat{F}, \hat{\nu}, \hat{\rho}$ are rapidly decreasing on \mathbb{R}^{n}.

$$
\left\{\begin{array} { l }
{ v = F - \nabla p } \\
{ \operatorname { d i v } v = 0 }
\end{array} \Rightarrow \left\{\begin{array}{l}
\hat{v}(k)=\hat{F}(k)-2 \pi i k \hat{p}(k) \\
2 \pi_{i} k \cdot \hat{v}(k)=0
\end{array}\right.\right.
$$

for each $k \in \mathbb{Z}^{n}$
We have a decoupled system of vector equs!

Taking the inner product of the first equation w / k gives:

$$
O=k \cdot \hat{F}(k)-2 \pi i|k|^{2} \hat{p}(k)
$$

af $k \neq 0$ then

$$
\hat{p}(k)=\frac{k \cdot \hat{F}(k)}{2 \pi i|k|^{2}} \quad, \quad \hat{v}(k)=\hat{F}(k)-k\left(\frac{k \cdot \hat{F}}{\left.k\right|^{2}}\right)
$$

Af $k=0$ then $\hat{v}(0)=\hat{F}(0)$ \& $\hat{\rho}(0)$ is arbitrary

Shus,

$$
\begin{aligned}
& p(x)=C+\sum_{k \in \mathbb{Z}^{n} \backslash\{00\}} \frac{k \cdot \hat{F} \mid k)}{2 \pi i|k|^{2}} e^{2 \pi i k \cdot x} \\
& V(x)=\hat{F}(0)+\sum_{k \in \mathbb{Z}^{n|n| 00\}}}\left(\hat{F}(k)-k\left(\frac{k \cdot \hat{F}(u)}{|k|^{2}}\right)\right) e^{2 \pi i k \cdot x}
\end{aligned}
$$

Again,

$$
\begin{aligned}
& p=C+\Delta^{-1} \operatorname{div} F \\
& V=F-\nabla \Delta^{-1} \operatorname{div} F
\end{aligned}
$$

Exercises
Define diva $=0$ in distutution sense

$$
\left.\begin{array}{rl}
H_{d f} & =\left\{u \in L^{2}\left(\mathbb{R}^{3} ; \mathbb{R}^{3}\right) \mid{\widetilde{R^{3}}}^{u \cdot \nabla \varphi d x}=0 \text { for all } \varphi \in C_{0}^{\infty}\left(\mathbb{R}^{3}\right)\right\} \\
H_{c f} & =\left\{\left.u \in L^{2}\left(\mathbb{R}^{3} ; \mathbb{R}^{3}\right)\right|_{\frac{\mathbb{R}^{3}}{} u \cdot c u l \phi d x=0} u \text { for all } \phi \in\left(C_{0}^{\infty}\left(\mathbb{R}^{3}\right)\right)\right\}
\end{array}\right\}
$$

(a) Show $H_{d f}$, Hop are closed in $L^{2}\left(\mathbb{R}^{3} ; \mathbb{R}^{3}\right)$ and $L^{2}\left(\mathbb{R}^{3} ; \mathbb{R}^{3}\right)=H_{a p} \oplus H_{c} f$
(6) Show that on $L^{2}\left(\mathbb{R}^{3} ; \mathbb{R}^{3}\right), \mathbb{P}$ is the orthogonal projection to Hab
(c) Show that \mathbb{P} is a non-expanewive map on $H^{s}\left(\mathbb{R}^{3} ; \mathbb{R}^{3}\right), \forall_{s \geqslant 0}$.

